Lecture 7/
Variation method

The variation method allow us to approximate the
Ground State of the energy without solving the S.E
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The Variational Method

Theory:
For a system whose Hamiltonian operator H is time independent and
whose lowest Energy Eigen value is E, if ¢ is any normalized well behaved

Function of the coordinates of the system particle that satisfy the
Boundary condition of the problem then

j p*Hepdr >E, @ 1s normalized wavefunction
If the function ¢ Is not normalized then
jgp* Hpdr
I¢*¢df
@ Is called trial function

> E,

j¢*H¢dr called Variation Integral =W
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The Variational Method

Procedure:
We try many trial function and the one give the Lower value of
variational integral, the better Approximation we have for E1

In practice:

|.  We put several parameters into the trial function ¢

Il. Then we vary the parameters so as to mininmize the
variational integral W AW

Ill. The lowest one is the best — =0
oc

The Real Utility of the Variation method is for problems to which
we do not know the true solution, we will consider some example
that we know energy (actual) to compare
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The Variational Theorem

This theorem states that if one chooses an approximate
wavefunction, ¢, then the Expectation Value for the energy is
greater than or equal to the exact ground state energy, E,.

_{olHlp)_Jo*Hedr
rial — —
| (wlo)  [p*pdr

<E>=E

> E,

Note: | will outline the proof, but you are responsible only for the
result and its applications.

_[go*ngdr E j_go_*godr 2o
I(O*(Odl’ Ojlgo*godr_

jgo*(H - Eo)godr
[o*pdz

Assume that we know the exact solutions, y,: Hy, 6 =E v,

Proof: <E>-E, =

<E>-E,=
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It was discussed that the set of eigenfunctions, v,
of the Hamiltonian form a complete set. of orthonormal functions.

That is, any arbitrary function with the same boundary conditions
can be expanded as a linear combination (an infinite number of terms)

of eigenfunctions.
0= CW, =D CV,
n=0 n

This can be substituted into the expression for <E> to get:

<E>-E, = [Cﬁ*(H - E,)pdr ) I(Zmlcmwmj*(H —EO)(;CM]M
0~ I(D*(Ddr l j(Zcmgymj*chwndT

<E>—E0:J@Cm‘”m]*@cj(H-EodeT
J.[;leymj ;cnyjndf
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[[Zown | [ZaE-ew Jor Tyee(e-efuive
<E>_EO: . : * — m n * *
d
J(Zcml//mj chl//ndr ;;Cmcnj‘l//ml//n 4

ZZC;C“(EH B Eo)amn

o nZZc*05

because jyj;wndf -5
v orthonormality
> cc, (B, —Ey)

<E>-E, =" - > O because ¢, >0
Y cc
o E —E, >0

Therefore;l<E >=E,_, =
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Applications of the Variational Method

The Particle in a Box
We learned that, for a PIB:

2 . (nﬂxj \/5 (ﬂxj
W, =,—SIn| — W, =,[—SIn| —
a a Ground a a

>

21,2
g, =1 state g -1 _0.125
8ma 8ma ma

In a HW problem, you were asked to show that
for the approximate PIB wavefunction = Ax(a - X)

2
The expectation value for <p2> is <p2> = 10?
a
2 2 2 2 2
Let’s calculate <E>: <E>: P :<p > = 107 = oh =0.12665 h
2m 2m  2ma‘  4z’*ma’ ma’
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2
Exact GS Energy: E, =0.125 L > using y, = \/Zsin(ﬂ—xj
ma a a

h2
Approx. GS Energy: E,,, =0.12665 — using v, = Ax(a-x)

The approximate wavefunction gives a ground state energy that is
only 1.3% too high.

This is because the approximate wavefunction is a good one.

VR

Wapprox.

(x w1 y2)
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PIB: A Second Trial Wavefunction

If one considers a second trial wavefunction: vy, = Ax*(a - x)°

It can be shown (with a considerable amount of algebra) that:

2 2 2
app_6h2:6h2 12:0.152 h
ma Ar° ma ma

21.6% Error

2

The much larger error using this second trial wavefunction is not
surprising if one compares plots of the two approximate functions.

o A\

\Vapprox Wapprox.

(x w1 w2) h? (x w3 w1
Vap = AX(@-X) E, =0.12665 VS x*(a-x)°  E,, =0.152

h2
ma®
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PIB: A Linear Combination of Combined Trial Wavefunctions

Let’s try a trial wavefunction consisting of a linear combination
of the two approximate functions which have been used:

Voo = AX(a-X)+ Bx* (a-x)’ 5

or V., = A[x(a— X)+Rx*(a- x)z} where R = X

Because the Variational Theorem states that the approximate
energy cannot be lower than the exact Ground State energy, one can
vary the ratio of the two functions, R, to find the value that minimizes

the approximate energy.

This can be done using a method (solving a Secular Determinant) that
we will learn later in the course. The result is:2

2
1138 and E,, =0.1250018—  0.0015% Error

2

B
2
A a ma Not bad!!

a) Quantum Chemistry, 71" Ed., by I. N. Levine, Slide 10



Wapprox

(x w1 y4) )
V aop = A[x(a— X)+Rx*(a-x) }
h2

ma*

E,,, = 0.1250018

The agreement of vy, With v, IS actually even better than it looks.

The two plots were perfectly superimposed and | had to add on a small
constant to vy, SO that you could see the two curves.
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An Approximate Harmonic Oscillator Wavefunction

—ax?l?2

Exact HO Ground State: H = —2——2+—kx v, = Ae

EO:%hw:thw

Let’s try an approximate wavefunction: Voo = A cos(Ax) _% <x< X

24

A IS a variational parameter, which
can be adjusted to give the

/\ lowest, i.e. the best energy.

\Vex act

(x w1V y2)

Slide 12



One can use y,,, to calculate an estimate to the Ground State
energy by: 24z g
Acos(AX)| - ——— + = kx*| Acos(Ax
c :<E>:<l//app H Wapp>:< ( )| 2u dx* 2 | ( )>
P <wapp l//app> (Acos(Ax)| Acos(AX))

It can be shown that, when this expression is evaluated, one gets:

- : ) A= A7
- (ﬂ 1jk A ok
= —-=—|— =—+C— where 2
oy 24 4| )° 7 C:ﬂ_—E:O.1612
24

Note: +2C =0.568 (will be needed later in the calculation).

Because E,, is a function of A (rather than 1), it is more convenient
to consider the variational parameter to be A = A2
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Y.
Ak A=4
Eapp:—+C— where 2 1
2u A C=2 _=-01612
24 4

Note: +/2C =0.568 (will be needed later in the calculation).

The approximate GS energy is a function of the variational parameter, A

One “could” find the best value of A,
which minimizes E,,, by trial and error.

But there must be a better way!!!

(o E) best A
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Ak 2 q

E =——+C— _ 2 c=Z _Z_01612 _
%~ 5, A where A=1 Yo J2C =0.568
dE
Surel!!l At the minimum in E,pp VS- A, ONE has: dapp =0
A

2
d{m Ck}
21 A

‘|’ex act

Wapprox. /\
Board \/

Abest = £ 568 |
h X
(x w1V y2) _
on It wasn'’t that great a wavefunction
Board in the first place.

E,. =0.284hw+0.284hw =0.568hw 13.6% error (compared to Eq = 0.5 ho)

Note: We will use;: @:\/E:w and L:\/E:a)
nooo\u NI,
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Linear Variation Functions

GO Back to Matrix, you need it

A special kind of variation function widely used in the study of molecules
IS the linear variation function.

A linear variation function is a linear combination of n linearly
iIndependent functions f., fz,c, f..

So g=cfitcf. +cfs + ... + Cofs
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Alinear variation function is a linear combination of n linearly
Independent functions f., f;,c, f..
SO D= C1f1+ szz + C3f3 + ... + Cnfn f

¢:ch f ¢ trial functionisreal. ¢, Parameters to be determined

f, called Basis set ( they must stasfy the boundary condition)

so the Variation function

[ ¢ got = ch Zcf Y jffat
J=1 j=1 k=1
assume S = j f f .ot called overlap integral
J.¢*¢atzzcjzcksjk
=1 k=l
[¢Hgot

the variational integral W =

[ g



¢=chfj ¢ trial functionisreal.  c; Parameters to be determined
j=1

f, called Basis set ( they must stasfy the boundary condition)
so the Variation function

JFat=[Yet e h=Dc > e f
=1 k=1 j=1 k=1

o [ Hgot
the variational integral W ==———— for the numenator
[ # gt
[oHpot=[>c;fHY ¢ f =D ¢;> ¢ fHfat
j=1 k=1 j=1 k=L
assume = _[ f,Hf ot
j¢*¢6t:ZCjzck I¢*¢@t=ZC,—ZCkS,—k
j=1 k=1 j=L k=1

- icjick
WZWﬁwQJ?k?
I¢¢at D¢, >.cS,

i k=




So lets evaluateiit........
o Jone 265
.th Zn:cjzn:cksjk

we can minimize Win a way to approach a position of E, [W > El].

and so Wzn:cjzn:cksjk :Zn:cjzn:ck
j=1 k=L k=1

i k=

The variational integral W is afunction of of the n independent variable

minimize W mean ﬂ =0
OC.

the proof is not important lets go to the results

n

H. . —-S W)c =0 1=1,2,3,4,5....... N
ik ik k

k=1

It Is a set of simultaneous Linear homogeneous
equations in the unknown ¢, c,,Cs,...C,f,

d=cf +c,f,+c,f,+c,f, +o., +c. f :chfj



The solution of the equation is:

> (Hy = SiW)c, =0 i=1,2.34,5...n
k=1
(Hy=SiW ) +(Hy, =S W) e, +(Hyg =S W )6+, +(Hy, —S,W)c, =0
(H21_821W)C1+(H22 _SZZW)Cz +(H23 —523W)C1+ ............... -I—(H2n _SZnW)Cn =0
(Ha = SuW e, +(Ha, = SiW )€, + (Hyg = SiW ) G+ +(Hg, —S,W ), =0
(Hll_Sllw)C1+(H12 _812W)C2 +(H13 _813W)C1+ ............... +(H1n _San)Cn :O

Hll _S]_]_W le _SZZW Hln —San C1

. , L

H,-SW H,-SW- H_ -SW)c

Matrix used to solveit ......... for n=2

H.-SW H._,-S.W)\c
( 11 11 12 12 j( 1}20 det(Hij —SijW)=0
H 21 S21\/\/ H 22 Szzw C,



Example:

Add a functions to the function x(I-x) to form a
linear variation function for a particle in 1-D box of
length | .Find the approximate energies and wave
function of the lowest four states?

Answer:

p=>c f.  n=4so g=>c,f,
j=1 j

f, = x(I —Xx)

f,=x*(1-x)* f, is well behaved and obeys boundary conditions at x =0 and x = |

There are an infinite number of possible well-behaved functions that could be
used for 2, 3, and f4. The function f, obeys the boundary conditions of vanishing
atx=0and x=1.

we shall add in two functions that are odd. An odd function must vanish at the
origin and vanish at the box midpoint x =%z |, as well as at x = 0 and |. A simple
function with these properties is f3 and f4



We got 3 and f4 by multiply f2 and f3 by (1/2 | — x)

f, =x(I—x) multiply by (%I —X) to get f,

f, =x*(1-x)*> multiply by (%I —X) to get f,

f =x(|—x)(%l—xj

f, :xz(l—x)Z(%I —xj

since f, and f, areeven and f, and f, areodd so
8132831: O 8142841: 0 8232832: O 8242842: O
and

H,=H;=0 H,=H,=0 Hy,=H;=0 H,=H,;=0



The secular equation becomg@ince

Hll - SllW H12 - Slp_W H13 — 813W
H21 o SZl\N H22 - 822W H23 - 823W
H31 o S31\N H32 - 532W H33 — 533W
H4l o S41\/\/ H42 o S42W H43 - S43W
SO
H,-S W H,-S,W 0
H,  =S,W  Hy —S,W 0
0 0 H33 B 833W
0 0 H43 o S43W
Hll_Sllw H12_812WJ|:C1i|:O
H, —=S,W Hy, =S,W | ¢,
(Hll —311W)C1 +(H12 _SIZW)CZ =0
(H21 _821W)C1 +(H22 _Szzw)cz =0

14 S14\N
24 S24\/\/
34 S34W

H
H
H
H 44 S44\/\/

0

0
H 34 S’34W
H 44 844W

(HBS
H43

(Ha,
(H

813:831: 0 814:841: 0
823:832: 0 824:842: 0
and

H,=H;=0 H,=H,=0
Hy=Hy, =0

=0 so

-S,W H,,
-S, W H,
_SS3W)C +(Ha, S34W)C

-S,Wc, +(H, Wc, =

H,=Hp=

0

-S,W c3 o
-S,W B




Evaluate H;; S,;....etc

=< M= (0 —X)(‘h_za_z][xo —x)Jox=Eb

g 2m ox*

I 5

S, =< f.f, >:jx(| =) x(1-x) |ox =%

0

h21° |’
H12:H21:30—m Slzzszlzm
215 7 219
H33:h| S33:|— Hy = "l
40m 840 1260m
Kel’ N
H34:H43:28Om S432834:%

So

6m




Energy states

5 5
——W —
6m 30 30m 140
215 7 217 9
7 B | W Al B I
30m 140 105m 630

=0 so

: 0.1250018 h* /ml?
W = h— (28i\/532) = / and from c, and c, matrix
1.293495 h? /ml?

2 0.500293 h? /ml?
w=| (60++/1620 ) = /
2.5393425 h* /ml?

so the (ml*/h? )W values are:

0.1250018, 0.500293, 1.293495 and 2.5393425 are compared to
0.125 .05 . 1.125 and 2
for the four lewst stated in exact solution of PIB



Wave functions

Substitution of W = 0.1250018 h*/ml® in

(H, —S,W)c, +(H,, —S,W)c,=0 (H,, —S,W)c, +(H,, -S,W)c,=0
give

0.023095¢, —0.02038 C,I> =0 ..o (1)

~0.061144c, +0.053960C,12=0 ......cevvveernne. )

assume c,=k so for eqn 1 0.023095c, —0.02038 c,I° =0 willbe
0.023095k =0.02038 c,I° = ¢,=1.132k/I’

tofindk <¢/¢>=1 andso <(c,f, +c,f,)/(c f, +c,f,)>

= < (kf,+1.132k/1% )/ (kf,+1.132k/1? ) =1

k=4.404/1°"

¢=c,f,+c,f, =4.40411%* +4.990f1%

=172 4.404(x/1) (L (x/1)) + 4.990 (1" (L (x/1))’

using W2,W3 and W4 we will get the follwing normailzed function in which X= X



The four wavefunctions

X =—
I

g = 17| 4.404X (1- X ) +4.990X*(1- X )’

g, =172 _16.78X (1-X)(1-X )(%— Xj+71.85X2 (1-X)’ (%— xﬂ

gy =172 28.65X (1- X )(1- X ) -132.7X* (1= X )'

¢, =17?| 98.99X (1- X )(%— xj—572.3x2 (1-X)’ (%— xﬂ




Application

1. Time-Independent Perturbation Theory
2. Variation method



The Helium Atom Schrodinger Equation

The Hamiltonian

G _PIE) PIR)zet ozt €
2m 2m

47rgorl_47zgor2 Are,l,
KE(1) KE(2) PE(l) PE(2) PE(12)

O
+/e
: R B Ze? Ze? e’ He: 7=2
H :—%Vf(rl)—%vé(rz

— — +
Are,t,  Arme,r, Ame,l,

Atomic Units: s =m=¢ = dre, =1

1 1 z 7 1
H=-=V(f)-=Vii)-—-=+—
> 1 (1) > (1) _—

r12

2
Vf(ﬁ):%i[rfi} S [sinel 4 ]+ —
r-or\  or ) r°sin“6, 06, 00, ) r1°sin“0, 0p,

1 0(,0 1 o | . 0 1 0’
— I, +——— sin @, +—— -
r, or,\ "~ or, ) r,sin“6, 00, 00, ) 1,sIn" 6, 0y,
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H=--V

The Schrddinger Equation

1, 1 z 7 1

2 1

1 L 1 N4
_Evlz(rl) __}+|:_Ev§(r2)_r_}
2

. 1
H=H,(R)+H,([R)+—

r12

I

Electron
Repulsion

1
+_

r12

(m—gvﬁm—7‘7+7'___» ) =BV
1 2 12

Y depends upon the
coordinates of both electrons

Can we separate variables?

Y(r,n) =y, (5) v,(r)

Nope!! The last term in the
Hamiltonian messes us up.
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Energy

The Experimental Electronic Energy of He

Reference State

B, =54.428V By definition, the QM reference

state (for which E=0) for atoms
and molecules is when all nuclei
|IE, = 24.59 eV and electrons are at infinite
] separation.

Ene =-[1Ey + IE;]
E..=-[24.59¢eV +54.42 eV ]

=-79.01 eV

Epe
or | E,. =-2.9037 au (hartrees)

Slide 31



The Independent Particle Model

1 / 1 / 1
H=|-ZV2(F)-= |+ -ZVi(F)-= |+
{ Vi) J { ViE) rb{

If the 1/r,, term Is causing all the problems, just throw it out.

' :{—%vf(ﬁ)—ﬂ{——vi(ﬂ)——} H,() + Hy(5)

Slide 32



Hl(ri)%(ri) - Ell//l(rl) and Hz(rz)l)”z(rz) - Ezl//z (rz)

Z

{—%V (1) }ul(r) E1W1(r) |:_%V§(F2)_r_}”2(fz): Ez‘/’z(rz)

Hey!!l These are just the one electron Schrddinger Equations for

“hydrogenlike” atoms. For Z=2, we have He".

We already solved this problem in Chapter 6.

Wavefunctions
() = AR, (n)-Y,, (6,0, v, (F) = AR

Ground State Wavefunctions
(1s: n=1,I=0,m=0)

(r,)- YI2m2 (0,,0,)

Nl

() = Ae pE(E) = Ave

Remember that in atomic units, a; = 1 bohr
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Energies

2 ZZ
E]_:—Z—Z E2:—_2
2N, 2N,
2 2
E=E +E,=- ZZ— 22
2n;  2n;
Ground State Energy
(np=n,=1)
2 2
E=E,+E, S L ~7% =-4au. (hartrees)
22 Z = 2 for He

E.,, =-2.9037 a.u.(hartrees)

Our calculated Ground State Energy is 38% lower than experiment.

This is because, by throwing out the 1/r, term in the Hamiltonian,
we ignored the electron-electron repulsive energy, which is positive.
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Perturbation Theory Treatment of Helium

H ={—ivf(ﬁ)—éH—ivi@)—5}+i

2 i 2 Ll W

The Helium Hamiltonian can be rewritten as:
H=H"+HU

where H® = —EVf(ﬁ)—E} {—Evg(@)—é}
]| 2 g

(=

HY =+
I’-12
HO is exactly solvable, as we just showed in the independent
particle method.

H® is a small perturbation to the exactly solvable Hamiltonian.
The energy due to H® can be estimated by First Order
Perturbation Theory.
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Zeroth Order Energy and Wavefunction

The “Zeroth Order” Ground State energy is:

2 2
E=E+E,= _27_27 =-7% au.=-4.00a.u.

The “Zeroth Order” wavefunction is the product of He*

1s wavefunctions for electrons 1 and 2

e

s

v =y () v
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First Order Perturbation Theory Correction to the Energy

In Chapter 5, we learned that the correction to the energy,
AE [or EM]is:

AE=E® = JV/(O)*H Wy O 7

3
For the He atom: H® = +i and y© = Z_e—Z(r1+r2) _ Ap-li+n)
I i
Therefore: AE = A? j dr, j dr e e 22" L Where dr, = r2sin(6,)dr.d6,d g,

I
. dr, = r/sin(6,)dr,d6,dg,

The evaluation of this integral is rather difficult, and in outlined
in several texts. 5
AE=-Z
8

e.g. Introduction to Quantum Mechanics in Chemistry, by M. A. Ratner
and G. C. Schatz, Appendix B.
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Therefore, using First Order Perturbation Theory, the total electronic
energy of the Helium atom is:

2 2
E=EY+AE =—Z7—Z7+§z = _2° +§-2=—2.75 au.

This result is 5.3% above (less negative) the experimental
energy of -2.9037 a.u.

However, remember that we made only the First Order Perturbation
Theory correction to the energy.

Order Energy % Error

0 -4.0 a.u. -38%
1 -2.75 +5
2 -2.91 -0.2
13 -2.9037 ~0
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Variational Method Treatment of Helium

Recall that we proved earlier in this Chapter that, if one has an
approximate “trial” wavefunction, ¢, then the expectation value

for the energy must be either higher than or equal to the true ground
state energy. It cannot be lower!!

(p|H]p)_[o*Hodz
wlo)  [o*pdr

This provides us with a very simple “recipe” for improving the energy.
The lower the better!!

<E>=E . =

trial

> E,

When we calculated the He atom energy using the “Independent
Particle Method”, we obtained an energy (-4.0 au) which was lower
than experiment (-2.9037 au).

Isn’t this a violation of the Variational Theorem??

No, because we did not use the complete Hamiltonian in our
calculation.
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A Trial Wavefunction for Helium

Recall that when we assumed an Independent Particle model for Helium,
we obtained a wavefunction which is the product of two 1s He* functions.

100 100 Z° . 78 12
p=y, (n)y, (r )—(—j ezﬁezfz:(_j o-2(1+0)

T T

For a trial wavefunction on which to apply the Variational Method,
we can use an “effective” atomic number, Z’, rather than Z=2.

By using methods similar to those above (Independent Particle Model
+ First Order Perturbation Theory Integral), it can be shown that

for H:—EV2 1V —é—é i Z = 2 for He

1
2 2 L r r,

Z '3 1/2
and Q= — e—z'(rl”z)
T
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H 12 12
EtriaI = <¢<L|¢|>¢>: 22 + ZT - 17" - 717" + 32'
KE(1) KE(2) PE(1) PE(2) PE(12)

5 5 27

E=27%-277'+27'=72%-42'+>7'=2%-=-7"
8 8 8

trial

He: Z=2

We want to find the value of Z’
which minimizes the energy, E

Once again, we can either use

trial-and-error (Yecch!!) or basic
I Calculus.

(2 E)

trial*
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Etrial =7 " 2_72
8
At minimum: % —0=2Z 21
For lowest Eyy: 7' = 20 — 16875 L
16
(27]2 27 27 o
Etrial T~ T a 1~
16 8 16
E..., =-2.848 au (1.9% higher than experiment)
vs. E . =-2.9037 au

expt

The lower value for the “effective” atomic number (Z'=1.69 vs. Z=2)
reflects “screening” due to the mutual repulsion of the electrons.
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Better Variational Wavefunctions

One can improve (i.e. lower the energy) by employing improved
wavefunctions with additional variational parameters.

A Two Parameter Wavefunction

Let the two electrons have different values of Z_:

0 = A[e-z'fle-z"fz +ete ™ | (we must keep treatment of the
two electrons symmetrical)

If one computes E,;, as a function of Z" and Z” and then finds
the values of the two parameters that minimize the energy,
one finds:

Z =119 E.ia =-2.876 au (1.0% higher than experiment)
/’=2.18

The very different values of Z' and Z” reflects correlation between
the positions of the two electrons; i.e. if one electron is close to the

nucleus, the other prefers to be far away.
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Another Wavefunction Incorporating Electron Correlation

0 = A[e‘z'“l”z) (1+b-r, )}

When E,,, is evaluated as a function of Z" and b, and the values of
the two parameters are varied to minimize the energy, the results are:

Z’'=119 E.. =-2.892 au (0.4% higher than experiment)
b =0.364

The second term, 1+br,,, accounts for electron correlation.

It increases the probability (higher ¢?) of finding the two electrons
further apart (higher ry,).
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A Three Parameter Wavefunction
0= A[(e‘z'“e‘z"r2 +e2mg ) o(1+b-r, )}
We have incorporated both ways of including electron correlation.

When E,, is evaluated as a function of Z', Z” and b, and the values of
the 3 parameters are varied to minimize the energy, the results are:

Z'=1435 E;, =-2.9014 au (0.08% higher than experiment)
Z" =2.209
b =0.292
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Even More Parameters

When we used a wavefunction of the form: ¢ = A[ 1) (14 b rlz)}

The variational energy was within 0.4% of experiment.

We can improve upon this significantly by generalizing ¢ to:
0 = A[ i) (1+ g(rlirZ’rIZ):|

a(ry,ryry,) is a polynomial function of the 3 interparticle distances.

Hylleras (1929) used a 9 term polynomial (10 total parameters) to
get: By =-2.9036 au (0.003% higher than experiment)

Kinoshita (1957) used a 38 term polynomial (39 total parameters) to
get: E iy =-2.9037 au (~0% Error)

To my knowledge, the record to date was a 1078 parameter
wavefunction [Pekeris (1959)]
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A Summary of Results

Eeypr = -2.9037 au

Wavefunction Energy % Error

Ag 2t -2.75 au  +5.3%

Ag~tlitr) -2.848 +1.9%

Ale et e et -2.876 +1.0%

Ale ™) (1ber,)| 2892 +0.4%

Al(e™ e +e e ™) (L+bor, ) 2.9014  +0.08%

0 = A[ W (L g(ninn,) 29037  ~0%

Notes: 1. The computed energy is always higher than experiment.

2. One can compute an “approximate” energy to whatever

degree of accuracy desired. |
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