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Lecture 7

Variation method

The variation method allow us to approximate the 

Ground State of the energy without solving the S.E
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The Variational Method

Theory: 

For a system whose Hamiltonian  operator H is time independent and 

whose lowest Energy Eigen value is E, if  is any normalized well behaved 

Function of the coordinates of the system particle that satisfy the 

Boundary condition of the problem then

0

0

*  is normalized wavefunction

if the function  is not normalized then

*

*

 is called trial function

* called Variation Integral =W

H d E

H d
E

d

H d
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The Variational Method

Procedure:  

We try many trial function and the one give the Lower value of 

variational integral, the better Approximation we have for E1

In practice:  

I. We put several parameters into the trial function 

II. Then we vary the parameters so as to mininmize the 

variational integral W  

III. The lowest one is the best

The Real Utility of the Variation method is for problems to which 

we do not know the true solution, we will consider some example 

that we know energy (actual) to compare

0
W

c
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The Variational Theorem

This theorem states that if one chooses an approximate

wavefunction, , then the Expectation Value for the energy is

greater than or equal to the exact ground state energy, E0.

trial

H
E E
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Proof:
0 0

* *
0

* *

H d d
E E E
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*

H E d
E E

d

  

  


   





Assume that we know the exact solutions, n: n n nH E 

 0

?

Note: I will outline the proof, but you are responsible only for the

result and its applications.
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It was discussed that the set of eigenfunctions, n,

of the Hamiltonian form a complete set. of orthonormal functions.

That is, any arbitrary function with the same boundary conditions

can be expanded as a linear combination (an infinite number of terms)

of eigenfunctions.

0

n n n n

n n

c c  




  

This can be substituted into the expression for <E> to get:
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c c d
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c c d

  

  

   
   

      
 
 
 

 

 

 * *

0

* *

m n n m n

m n

m n m n

m n
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c c







   
 

 
because

*

m n mnd   
 orthonormality

*

0

0 *

( )n n n

n

n n

n

c c E E

E E
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Therefore: 0trial

H
E E E
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Applications of the Variational Method

The Particle in a Box

We learned that, for a PIB:

2 2
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Ground

State

In a HW problem, you were asked to show that

for the approximate PIB wavefunction ( )app A x a x  

The expectation value for <p2> is
2

2

2

10
p

a


Let’s calculate <E>:
22

2 2

pp
E

m m
 

2

2
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2ma
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2

2
0.12665
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vals.1
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0 a

X

exact

approx.

2

1 2
0.125

h
E

ma
 usingExact GS Energy:

1

2
sin

x

a a




 
  

 

2

2
0.12665app

h
E

ma
 usingApprox. GS Energy: ( )app A x a x  

The approximate wavefunction gives a ground state energy that is

only 1.3% too high.

This is because the approximate wavefunction is a good one.
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PIB:  A Second Trial Wavefunction

If one considers a second trial wavefunction:
2 2( )app Ax a x  

It can be shown (with a considerable amount of algebra) that:

2 2 2

2 2 2 2

6 6 1
0.152

4
app

h h
E

ma ma ma
   21.6% Error

The much larger error using this second trial wavefunction is not

surprising if one compares plots of the two approximate functions.
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PIB:  A Linear Combination of Combined Trial Wavefunctions

   
22

app Ax a x Bx a x    

Let’s try a trial wavefunction consisting of a linear combination

of the two approximate functions which have been used:

or    
22

app A x a x Rx a x     
 

B
R

A
where

Because the Variational Theorem states that the approximate

energy cannot be lower than the exact Ground State energy, one can

vary the ratio of the two functions, R, to find the value that minimizes

the approximate energy.

This can be done using a method (solving a Secular Determinant) that

we will learn later in the course.  The result is:a

a)  Quantum Chemistry, 7th Ed., by I. N. Levine, 

2

1.133B
R

A a
 

2

2
0.1250018app

h
E

ma
and 0.0015% Error

Not bad!!
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The agreement of approx. with exact is actually even better than it looks.

The two plots were perfectly superimposed and I had to add on a small

constant to exact so that you could see the two curves.

   
22

app A x a x Rx a x     
 

2

2
0.1250018app

h
E

ma
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X

exact
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An Approximate Harmonic Oscillator Wavefunction

Exact HO Ground State:
2 / 2

0

xAe  

0

1

2
E    

2 2
2

2

1

2 2

d
H kx

dx
  

Let’s try an approximate wavefunction: cos( )app A x 
2 2

x
 

 
  

 is a variational parameter, which

can be adjusted to give the

lowest, i.e. the best energy.
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0
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One can use app to calculate an estimate to the Ground State

energy by:

app app

app

app app

H
E E

 

 
 

2 2
2

2

1
cos( ) cos( )

2 2

cos( ) cos( )

d
A x kx A x

dx

A x A x

 


 

 



It can be shown that, when this expression is evaluated, one gets:

2

2


 



k
C

Because Eapp is a function of 2 (rather than ), it is more convenient

to consider the variational parameter to be  = 2.

2 1
0.1612

24 4


  C

2 

where

2 2 2

2

1

2 24 4
app

k
E

 

 

 
   

 

Note:                   (will be needed later in the calculation).2 0.568C
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vals.1

v
a

ls
.2

xx E( )



Eapp

The approximate GS energy is a function of the variational parameter, 

One “could” find the best value of ,

which minimizes Eapp, by trial and error.

But there must be a better way!!!

best 

2

2


 


app

k
E C 2 1

0.1612
24 4


  C

2 

where

Note:                   (will be needed later in the calculation).2 0.568C
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Sure!!  At the minimum in Eapp vs. , one has: 0


appdE

d
2

2
0



 
 

  


k
d C

d

On

Board

13.6% error (compared to E0 = 0.5 ħ)

It wasn’t that great a wavefunction

in the first place.
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  C2 where 2 0.568C

2 0.568
 

  best

k k
C

0.284 0.284 0.568bestE     
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Board


 

  
   an

k k

k
d

k k
Note: We will use:
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Linear  Variation Functions

GO Back to Matrix, you need it

A special kind of variation function widely used in the study of molecules 

is the linear variation function. 

A linear variation function is a linear combination of n linearly 

independent functions f1, f2,c, fn: 

So    c1f1+ c2f2 + c3f3          cnfn
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1

j

*

  trial function is real.      c  Parameters to be determined

                                f   called Basis set ( they must stasfy the boundary condition)

so the Variation function 

n

j j j

j

c f

t

 

 










1 1 1 1
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assume 

 variational in egral 
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A linear variation function is a linear combination of n linearly 

independent functions f1, f2,c, fn: 

So   c1f1+ c2f2 + c3f3          cnfn f
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1

j

*

  trial function is real.      c  Parameters to be determined

                                f   called Basis set ( they must stasfy the boundary condition)

so the Variation function 

n

j j j

j

c f

t

 

 










1 1 1 1
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 variational integral        the numenator
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So lets evaluate it……..
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n

 ro f i  n t

.

 i port nt ets

... )

minimize W

 go to the results

0 1,2,3,4,5.......,

 mean 0

n

n

ik ik k

i

k
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It is a set of simultaneous Linear homogeneous 

equations in the unknown c1, c2,c3,…cnfn

1 1 2 2 3 3 4 4

1

...............
n

n n j j

j

c f c f c f c f c f c f


       



The solution of the equation is: 
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11 11 1 12 12 2 13 13 1 1 1

21 21 1 22 22 2 23 23 1 2 2

31 31 1 32 32 2 33 33 1

1

............... 0

............... 0

........

0 1,2,3,4,5.......,

n n n

n

n

ik i

n n

k k

k

H

H S W c H S W c H S W c H S W c

H S W

n

c H S W c H S W c H S W c

H S W c H

S W c i

S W c H S W c



        

        

     

  

 

       

3 3

11 11 1 12 12 2 13 13 1 1 1

11 11 12 22 1 1

1 1 2

1

2

.

0

...... 0

.

.

............... 0

n n n

n n n

n n

n n n n nn nn n

H S W c

H S W c H S W c H S W c H S W c

H S W H S W H S W

H S W H S cW H S W

c

  

        

  
  

 



 
  
 

 

  

111 11 12 12

21 21 22 22 2

Matrix used to solve it ......... 2

0 det( ) 0ij ij

for n

cH S W H S W
H S W

H S W H S W c



    
    

   



Example: 

Add a functions to the function x(l-x) to form a 

linear variation function for a particle in 1-D  box of 

length l .Find the approximate energies and wave 

function of the lowest four states?

Answer:
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4

1 1

1

2 2

2 2

       n = 4 so           

( )                            

 ( )    is well behaved and obeys boundary conditions at 0   

n

j j j j

j j

c f c f

f x l x

f x l x f x and x l

 
 

 

 

   

 

There are an infinite number of possible well-behaved functions that could be 

used for f2, f3, and f4. The function f2 obeys the boundary conditions of vanishing 

at x = 0 and x = l.

we shall add in two functions that are odd. An odd function must vanish at the 

origin and vanish at the box midpoint x = ½ l, as well as at x = 0 and l. A simple

function with these properties is f3 and f4



We got f3 and f4 by multiply f2 and f3 by (1/2 l – x)
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(
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13 31 14 41 23 32 24

13 1

42

31 4 41 23 32 24 42

= S = 0 = S = 0

 

  = S = 0 = S = 0

= H = 0 = H = 0  = H = 0 =

a

= 0

 

H

nd

 

are odd so

H H

S S S S

H H



The secular equation become:
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11 11 12 12 13 13 14 14

21 21 22 22 23 23 24 24

31 31 32 32 33 33 34 34

41 41 42 42 43 43 44 44 13 31 14 41

2

13 31 14 41

23 32 24 42

= S = 0 = S = 0

=

s

S = 0 = S = 0

a

 

=

e

H = 0 = H =

inc  

0

nd

  

 
 

H S W H S W H S W H S W
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H S W H S W H S W H S W H H
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H

   

   

   

   

4

3 32 24 42

11 11 12 12
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33 33 34 34

43 43 44 44
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4 3
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2 33 33 3 34 34 3

4

11

2 43 4

11 1 12 1 2

21 1 43 4 42 42 42 1 2 2

0
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0
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Evaluate H11    S11….etc
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2 2 2 3

11 1 1 2

0

5

11 1 1

0

2 5 7 2 7 9

12 21 12 21 22 22

2 5 7 2 9 11

33 33 44 44

2 7

34 43 43

2 6

30

30 140 105 630

40 840 1260 27720

280

l

l

l
H f H f x l x x l x x

m x m

l
S f f x l x x l x x

l l l l
H H S S H S

m m

l l l l
H S H S

m m

l
H H S

m

 
           

       

     

   

 





9

34
5040

l
S 

So



Energy states 
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2 22

3 42 2 2

2 22

2 3 5 2 5 7

2 5 7 2

2 2 2

7 9
0

0.1250018
28 532  and from c  and c  ma

6 30

3

30 140

30 1

trix
1.293495

0.500293

40 105 63

60 1620
2.539 5

0

42

so

h

l l l l
W W

m m

l l l l
W W

W
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W

ml h ml

h

m
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ml h m

m
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 2 2

 0.125        ,    0.5         ,   1.125        and   2    

for the four lewst stated in exact solution of PIB 

so the :

0.1250018 , 0.500293, 1.293495 2.5393425

   

ml h W values are

and are compared to

 
  
 



Wave functions
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       11 11 1 12 12 2 21 21 1 22 22 2

2

1 2

2

1 2

2 2

0                     0 

0.023095 0.02038 0   ............(1)                  

0.061144 0.053960 0 .........

0.1250018S

g

H S W

l

ubstitu

c

ti

c H S W c H S W c H S

on of W h ml

c

in

i

c

e

c

l

v

W

c

       

 

  



   

   

2

1 1 2

2 2

2 2

1 1 1 1 2 2 1 1 2 2

2 2

1 1

5 2

1

.........(2)

assume c =k so for eqn 1  0.023095 0.02038 0   will

0.023095 0.02038 =1.132k  

to find k < / >=1  and so    < c / c

+1.132 / +1.132 =1

4.404  

=

c c l be

k c l c l

f c f f c f

kf k l kf k l

k l

 



 

 

  

 



         

5 2 9 2

1 1 2 2 1 1

221 2

1

c 4.404 4.990

4.404 1 4.990 1  

using  W2,W3 and W4 we will get the follwing normailzed function in which X=    

f c f f l f l

l x l x l x l x l

x

l

 

  

    
 



The four wavefunctions
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21 2 2

1

21 2 2

2

21 2 2

3

21 2 2

4

4.404 1 4.990 1  

1 1
16.78 1 1 71.85 1

2 2

28.65 1 1 132.7 1

1 1
98.99 1 572.3 1

2 2

x
X

X

l

l X X X X

l X X X X X X X

l X X X X

l X X X X X X

















    
 

    
          

    

     
 

    
         

  



 



Application 

1. Time-Independent Perturbation Theory 

2. Variation method
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The Helium Atom Schrödinger Equation

+Ze

-e -e

He:  Z=2

r1 r2

r12
The Hamiltonian

2 2 2 2 2

1 1 2 2

0 1 0 2 0 12

( ) ( )

2 2 4 4 4

p r p r Ze Ze e
H

m m r r r  
    

^ ^

KE(1) KE(2) PE(1) PE(2) PE(12)

2 2 2 2 2
2 2

1 1 2 2

0 1 0 2 0 12

( ) ( )
2 2 4 4 4

Ze Ze e
H r r

m m r r r  
       

04 1m e    Atomic Units:

2
2 2

1 1 1 12 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1
( ) sin

sin sin
r r

r r r r r


    

       
      

       

2
2 2

2 2 2 22 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 1 1
( ) sin

sin sin
r r

r r r r r


    

       
      

       

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r
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2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r
       

The Schrödinger Equation

1 2 1 2( , ) ( , )H r r E r r  

 depends upon the

coordinates of both electrons

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r

   
           

   

1 1 2 2

12

1
( ) ( )H H r H r

r
   Can we separate variables?

1 2 1 1 2 2( , ) ( ) ( )r r r r    ??

Nope!!  The last term in the 

Hamiltonian messes us up.

Electron

Repulsion
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The Experimental Electronic Energy of He

IE1 = 24.59 eV

IE2 = 54.42 eV

0

He

He+ + e-

He2+ + 2e-

E
n

e
rg

y

EHe = -[ IE1 + IE2 ]

EHe = -[ 24.59 eV + 54.42 eV ]

EHe = -79.01 eV

or EHe = -2.9037 au (hartrees)

Reference State

By definition, the QM reference

state (for which E=0) for atoms

and molecules is when all nuclei

and electrons are at infinite

separation.
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The Independent Particle Model

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

Z Z
H r r

r r r

   
           

   

If the 1/r12 term is causing all the problems, just throw it out.

2 2

1 1 2 2 1 1 2 2

1 2

1 1
( ) ( ) ( ) ( )

2 2

Z Z
H r r H r H r

r r

   
            

   

Separation of Variables:  Assume that 1 2 1 1 2 2( , ) ( ) ( )r r r r   

 1 1 2 2 1 1 2 2 1 2 2( ) ( ) ( ) ( ) ( ) ( )H r H r r r E r r      

2 2 1 1 1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r H r r r H r r E r r       

1 1 1 1 2 2 2 2

1 1 2 2

1 1
( ) ( ) ( ) ( )

( ) ( )
H r r H r r E

r r
 

 
 

=

E1

=

E2
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1 1 1 1 1 1 1( ) ( ) ( )H r r E r  2 2 2 2 2 2 2( ) ( ) ( )H r r E r and

2

1 1 1 1 1 1 1

1

1
( ) ( ) ( )

2

Z
r r E r

r
 

 
    

 

2

2 2 2 2 2 2 2

2

1
( ) ( ) ( )

2

Z
r r E r

r
 

 
    

 

Hey!!! These are just the one electron Schrödinger Equations for

“hydrogenlike” atoms.  For Z=2, we have He+.

We already solved this problem in Chapter 6.

Wavefunctions

1 1 1

1 1 1 11 1 1 1 1( ) ( ) ( , )n l m

n l l mr A R r Y     2 2 2

2 2 2 22 2 2 2 2( ) ( ) ( , )n l m

n l l mr A R r Y    

Ground State Wavefunctions

(1s:  n=1,l=0,m=0)

1100

1 1( )
Z r

r A e 
  2100

2 2( )
Z r

r A e 
 

Remember that in atomic units, a0 = 1 bohr
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Energies

2

1 2

12

Z
E

n
 

2

2 2

22

Z
E

n
 

2 2

1 2 2 2

1 22 2

Z Z
E E E

n n
    

Ground State Energy

(n1 = n2 = 1)

2 2

1 2
2 2

Z Z
E E E    

2Z  4 . . ( )a u h a r tre e s 

Z = 2 for He

exp 2 .9037 . . ( )E a u hartrees 

Our calculated Ground State Energy is 38% lower than experiment.

This is because, by throwing out the 1/rl2 term in the Hamiltonian,

we ignored the electron-electron repulsive energy, which is positive.
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Perturbation Theory Treatment of Helium

2 2

1 1 2 2

1 2 12

1 1 1
( ) ( )

2 2

   
           

   

Z Z
H r r

r r r

The Helium Hamiltonian can be rewritten as:

(1)

12

1
H

r
 

( 0 ) (1 )H H H 

where (0) 2 2

1 1 2 2

1 2

1 1
( ) ( )

2 2

   
          

   

Z Z
H r r

r r

H(0) is exactly solvable, as we just showed in the independent

particle method.

H(1) is a small perturbation to the exactly solvable Hamiltonian.

The energy due to H(1) can be estimated by First Order

Perturbation Theory.
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( 0 ) ( 0 ) ( 0 ) ( 0 )H E 

The “Zeroth Order” Ground State energy is:

2 2

1 2
2 2

Z Z
E E E    

2 . . 4.00 . .   Z a u a u

The “Zeroth Order” wavefunction is the product of He+

1s wavefunctions for electrons 1 and 2

( 0 ) 100 100

1 1 2 2( ) ( )r r    1 2

1/2 1/2
3 3

Zr ZrZ Z
e e

 

 
      

       
         

1 2 1 2

3
( ) ( )(0 ) Z r r Z r rZ

e Ae


    

Zeroth Order Energy and Wavefunction
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First Order Perturbation Theory Correction to the Energy

In Chapter 5, we learned that the correction to the energy, 

E  [or E(1)] is:

(1) ( 0 ) (1) ( 0 )*E E H d     

(1)

12

1
H

r
  1 2 1 2

3
( ) ( )(0 ) Z r r Z r rZ

e Ae


    andFor the He atom:

1 22 22

1 2

12

1Zr Zr
E A dr dr e e

r

 
   Therefore:

5

8
E Z 

2

1 1 1 1 1 1

2

2 2 2 2 2 2

sin( )

sin( )

dr r dr d d

dr r dr d d

  

  





where

The evaluation of this integral is rather difficult, and in outlined

in several texts.

e.g. Introduction to Quantum Mechanics in Chemistry, by M. A. Ratner

and G. C. Schatz, Appendix B.
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Therefore, using First Order Perturbation Theory, the total electronic

energy of the Helium atom is:

2 2
(0) 5

2 2 8

Z Z
E E E Z      

2 5
2 2 2.75 . .

8
a u     

This result is 5.3% above (less negative) the experimental

energy of -2.9037 a.u.

However, remember that we made only the First Order Perturbation

Theory correction to the energy.

Order       Energy      % Error

0             -4.0  a. u.    -38%

1             -2.75            +5

2             -2.91          -0.2

13            -2.9037       ~0
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Variational Method Treatment of Helium

Recall that we proved earlier in this Chapter that, if one has an

approximate “trial” wavefunction, , then the expectation value

for the energy must be either higher than or equal to the true ground

state energy.  It cannot be lower!!

trial

H
E E

 

 
  

0

*

*

H d
E

d

  

  
 





This provides us with a very simple “recipe” for improving the energy.

The lower the better!!

When we calculated the He atom energy using the “Independent

Particle Method”, we obtained an energy (-4.0 au) which was lower

than experiment (-2.9037 au).

Isn’t this a violation of the Variational Theorem??

No, because we did not use the complete Hamiltonian in our

calculation.



Slide 40

A Trial Wavefunction for Helium

Recall that when we assumed an Independent Particle model for Helium,

we obtained a wavefunction which is the product of two 1s He+ functions.

100 100

1 1 2 2( ) ( )r r    1 2 1 2

1/ 2 1/ 2
3 3

( )Zr Zr Z r rZ Z
e e e

 

      
    

   

For a trial wavefunction on which to apply the Variational Method,

we can use an “effective” atomic number, Z’, rather than Z=2.

By using methods similar to those above (Independent Particle Model

+ First Order Perturbation Theory Integral), it can be shown that

2 2

1 2

1 2 12

1 1 1

2 2

Z Z
H

r r r
       for Z = 2 for He

and 1 2

1/2
3

'( )' Z r rZ
e
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trial

H
E

 

 


2 2' ' 5
' ' '

2 2 8

Z Z
ZZ ZZ Z    

KE(1) KE(2) PE(1) PE(2) PE(12)

2 5
' 2 ' '

8
trialE Z ZZ Z   2 27

' '
8

Z Z 2 5
' 4 ' '

8
Z Z Z  

He:  Z = 2

vals.1

v
a

ls
.2

Z E( )

Etrial

Z’

We want to find the value of Z’

which minimizes the energy, Etrial.

Once again, we can either use

trial-and-error (Yecch!!) or basic

Calculus.
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Etrial

Z’
vals.1

v
a

ls
.2

Z E( )

2 27
' '

8
trialE Z Z 

At minimum:
27

0 2 '
' 8

trialdE
Z

dZ
  

27
' 1.6875

16
Z  For lowest Etrial:

2
27 27 27

16 8 16
trialE

 
   

 

2.848tria lE au  (1.9% higher than experiment)

exp 2 .9037tE au vs.

The lower value for the “effective” atomic number (Z’=1.69 vs. Z=2)

reflects “screening” due to the mutual repulsion of the electrons.



Slide 43

A Two Parameter Wavefunction

One can improve (i.e. lower the energy) by employing improved

wavefunctions with additional variational parameters.

Better Variational Wavefunctions

Let the two electrons have different values of Zeff:

1 2 1 2' '' '' 'Z r Z r Z r Z r
A e e e e       

(we must keep treatment of the

two electrons symmetrical)

If one computes Etrial as a function of Z’ and Z’’ and then finds

the values of the two parameters that minimize the energy,

one finds:

Z’ = 1.19

Z’’ = 2.18

Etrial = -2.876 au (1.0% higher than experiment)

The very different values of Z’ and Z’’ reflects correlation between

the positions of the two electrons; i.e. if one electron is close to the 

nucleus, the other prefers to be far away.
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Another Wavefunction Incorporating Electron Correlation

 1 2'( )

121
Z r r

A e b r      

The second term, 1+br12, accounts for electron correlation.

Z’ = 1.19

b = 0.364

Etrial = -2.892 au (0.4% higher than experiment)

When Etrial is evaluated as a function of Z’ and b, and the values of

the two parameters are varied to minimize the energy, the results are:

It increases the probability (higher 2) of finding the two electrons

further apart (higher r12).
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A Three Parameter Wavefunction

Z’ = 1.435

Z’’ = 2.209

b = 0.292

Etrial = -2.9014 au (0.08% higher than experiment)

When Etrial is evaluated as a function of Z’, Z’’ and b, and the values of

the 3 parameters are varied to minimize the energy, the results are:

   1 2 1 2' '' '' '

121
Z r Z r Z r Z r

A e e e e b r         
 

We have incorporated both ways of including electron correlation.



Even More Parameters

When we used a wavefunction of the form:  1 2'( )

121
Z r r

A e b r      

The variational energy was within 0.4% of experiment.

We can improve upon this significantly by generalizing  to:

 1 2'( )

1 2 121 ( , ,
Z r r

A e g r r r     

g(r1,r2,r12) is a polynomial function of the 3 interparticle distances.

(0.003% higher than experiment)

Hylleras (1929) used a 9 term polynomial (10 total parameters) to

get:  Etrial = -2.9036 au

(~0% Error)

Kinoshita (1957) used a 38 term polynomial (39 total parameters) to

get:  Etrial = -2.9037 au

To my knowledge, the record to date was a 1078 parameter

wavefunction [Pekeris (1959)]
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Wavefunction       Energy      % Error

A Summary of Results

Eexpt. = -2.9037 au

1 2( )Z r r
A e

  -2.75  au      +5.3%

1 2'( )Z r r
A e

  -2.848          +1.9%

1 2 1 2' '' '' 'Z r Z r Z r Z r
A e e e e

      -2.876          +1.0%

 1 2'( )

121
Z r r

A e b r
     -2.892          +0.4%

   1 2 1 2' '' '' '

121
Z r Z r Z r Z r

A e e e e b r
       

  -2.9014        +0.08%

 1 2'( )

1 2 121 ( , ,
Z r r

A e g r r r     
(39 parameters)

-2.9037         ~0%

Notes: 1.  The computed energy is always higher than experiment.

2.  One can compute an “approximate” energy to whatever

degree of accuracy desired.


